89,037 research outputs found

    Metabolic and cardiac adaptation to chronic pharmacologic blockade of facilitative glucose transport in murine dilated cardiomyopathy and myocardial ischemia

    Get PDF
    Abstract GLUT transgenic and knockout mice have provided valuable insight into the role of facilitative glucose transporters (GLUTs) in cardiovascular and metabolic disease, but compensatory physiological changes can hinder interpretation of these models. To determine whether adaptations occur in response to GLUT inhibition in the failing adult heart, we chronically treated TG9 mice, a transgenic model of dilated cardiomyopathy and heart failure, with the GLUT inhibitor ritonavir. Glucose tolerance was significantly improved with chronic treatment and correlated with decreased adipose tissue retinol binding protein 4 (RBP4) and resistin. A modest improvement in lifespan was associated with decreased cardiomyocyte brain natriuretic peptide (BNP) expression, a marker of heart failure severity. GLUT1 and −12 protein expression was significantly increased in left ventricular (LV) myocardium in ritonavir-treated animals. Supporting a switch from fatty acid to glucose utilization in these tissues, fatty acid transporter CD36 and fatty acid transcriptional regulator peroxisome proliferator-activated receptor α (PPARα) mRNA were also decreased in LV and soleus muscle. Chronic ritonavir also increased cardiac output and dV/dt-d in C57Bl/6 mice following ischemia-reperfusion injury. Taken together, these data demonstrate compensatory metabolic adaptation in response to chronic GLUT blockade as a means to evade deleterious changes in the failing heart

    Changes in Cardiac Substrate Transporters and Metabolic Proteins Mirror the Metabolic Shift in Patients with Aortic Stenosis

    Get PDF
    In the hypertrophied human heart, fatty acid metabolism is decreased and glucose utilisation is increased. We hypothesized that the sarcolemmal and mitochondrial proteins involved in these key metabolic pathways would mirror these changes, providing a mechanism to account for the modified metabolic flux measured in the human heart. Echocardiography was performed to assess in vivo hypertrophy and aortic valve impairment in patients with aortic stenosis (n = 18). Cardiac biopsies were obtained during valve replacement surgery, and used for western blotting to measure metabolic protein levels. Protein levels of the predominant fatty acid transporter, fatty acid translocase (FAT/CD36) correlated negatively with levels of the glucose transporters, GLUT1 and GLUT4. The decrease in FAT/CD36 was accompanied by decreases in the fatty acid binding proteins, FABPpm and H-FABP, the β-oxidation protein medium chain acyl-coenzyme A dehydrogenase, the Krebs cycle protein α-ketoglutarate dehydrogenase and the oxidative phosphorylation protein ATP synthase. FAT/CD36 and complex I of the electron transport chain were downregulated, whereas the glucose transporter GLUT4 was upregulated with increasing left ventricular mass index, a measure of cardiac hypertrophy. In conclusion, coordinated downregulation of sequential steps involved in fatty acid and oxidative metabolism occur in the human heart, accompanied by upregulation of the glucose transporters. The profile of the substrate transporters and metabolic proteins mirror the metabolic shift from fatty acid to glucose utilisation that occurs in vivo in the human heart

    The Impact of Chronic Liver Diseases on the Level of Heart-Type Fatty Acid-Binding Protein (H-FABP) Concentrations

    Get PDF
    Objectives: Heart-type fatty acid binding-protein (H-FABP) has been reported to be a potential novel biochemical marker for the early diagnosis of acute myocardial infarction (AMI). The presence of H-FABP in the liver has not been reported. The aim of this study was to compare the effect of chronic liver diseases on the level of H-FABP concentrations. Methods: The effects of chronic liver diseases including infective hepatitis and cirrhosis on the concentration of H-FABP was studied in a small group of patients (n=10, mean age ±SD = 58.33 ± 7.19 years). The serum concentrations of the following markers were measured: H-FABP, alanine aminotransferase (ALT) and bilirubin and compared with a reference control group (20 healthy blood donors, mean age ±SD = 63.8 ±8.01). Results: The serum concentrations of these markers in the control group as compared to patients with chronic liver disease were as follows (mean ± SD): H-FABP = 6.86 ±2.21 µg/L versus 6.44 ±3.06 µg/L (p = NS); ALT = 29.8 ±14.7 U/L versus ALT = 198.67 ±122.89 U/L (p < 0.0005) and bilirubin = 9.6 ±4.0 µmol/L versus bilirubin = 100.89 ±87.85 µmol/L (p < 0.0001). Conclusion: These data illustrate clearly that there is no significant interference with the normal concentration of H-FABP in the presence of liver diseases, despite the significant elevation of liver enzymes and proteins. These data may support a useful role of H-FABP for the diagnosis of myocardial injury in patients with liver diseases

    Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies

    Get PDF
    Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel

    Three dimensional structure prediction of fatty acid binding site on human transmembrane receptor CD36

    Get PDF
    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127–279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127–279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions

    Heparin Binding Protein in Adult Heart Surgery

    Get PDF
    Background. Heparin binding protein (HBP) is released from neutrophilic secretory vesicles upon neutrophil adhesion on the endothelium. HBP mediates capillary hyperpermeability experimentally. In sepsis, HBP predicts organ dysfunction. Cardiopulmonary bypass induces neutrophil activation and hyperpermeability. We hypothesized that in cardiopulmonary bypass, HBP is released in the reperfused coronary circulation concomitantly with neutrophil adhesion. Methods. In 30 patients undergoing aortic valve replacement, concomitant blood samples were drawn from the coronary sinus and arterial line before aortic cross-clamping and 5 minutes after reperfusion to calculate transcoronary differences. Plasma HBP concentrations, neutrophil markers lactoferrin and myeloperoxidase, myocardial injury marker heart-type fatty acid binding protein, and leukocyte differential counts were measured. Results. Arterial HBP was 4.1 ng/mL (interquartile range [IQR], 3.6 to 5.3 ng/mL) preoperatively and 150.0 ng/mL (IQR, 108.2 to 188.6 ng/mL) after aortic declamping. HBP increased 39-fold, lactoferrin 16-fold, and myeloperoxidase fourfold during cardiopulmonary bypass. Before cardiopulmonary bypass, there were marginal transcoronary differences in HBP (1.4 ng/mL; IQR, -0.4 to 3.6 ng/mL; p = 0.001) and heart-type fatty acid binding protein (0.4 ng/mL; IQR, -0.04 to 3.5 ng/mL; p = 0.001) but not in the other indicators. During reperfusion, transcoronary HBP release (6.4 ng/mL; IQR, 1.8 to 13.7; ng/mL; p <0.001) was observed concomitantly with transcoronary neutrophil sequestration (-0.14 3 109/L; IQR, -0.28 to 0.01 3 109/L; p = 0.001) and transcoronary heart-type fatty acid binding protein release (6.9 ng/mL; IQR, 3.0 to 25.8 ng/mL; p <0.001). There were no transcoronary differences in lactoferrin or myeloperoxidase during reperfusion. Conclusions. Cardiopulmonary bypass results in substantial increase in circulating HBP. HBP is also released from the reperfused coronary circulation concomitantly with coronary neutrophil adhesion and myocardial injury. HBP may be one candidate for a humoral factor mediating capillary leak in cardiopulmonary bypass. (C) 2019 by The Society of Thoracic SurgeonsPeer reviewe
    • …
    corecore